Remote Navigation for VT Ablation

J. David Burkhardt M.D.

Director of Research Texas Cardiac Arrhythmia Institute Austin, TX Director of Complex Arrhythmia Ablation Scripps Clinic La Jolla, CA

FACULTY/PRESENTER DISCLOSURE

- Faculty: J. David Burkhardt
- Relationships with commercial interests:
 - Speakers Bureau/Honoraria: Biosense-Webster, St. Jude, Stereotaxis, Boeringer-Ingelheim

Needs in Electrophysiology

• Navigation for complex procedures

• Automation and standardization of procedures

• Platforms for new ablation technologies

Use

Applications

Technology Overview

What is the Magnetic Field Strength of Stereotaxis?

- 1 .001 T
- 2. .08-.1 T
- 3. 1T-3T
- 4. 10T

Magnetic Field Basics

Magnetic fields are caused by moving electrical charges

Can be created by:

- Passing current through a superconducting coil
 - (i.e., superconducting magnets)

Atomic or molecular currents within a material (i.e., permanent magnets)

Magnetic Navigation Systems

- Multiple magnets
- Navigational field direction is a combination of all magnetic fields

2 computer controlled magnets (0.08 Tesla) surround patient and move to control a relatively uniform magnetic field (15cm in dia); Vector is steerable in any direction

Primary Differences

Magnetic Navigation vs Manual Navigation

- Device controlled directly at distal tip
- Highly flexible devices
- Remote navigation
 - No Lead Vest
 - No Radiation to physician
- Computerized control and integration

Stereotaxis Remote Magnetic Control

Remote AFib Ablation Procedure

Flexibility and Softness of Catheters

Stable Catheter Contact

Courtesy of University Hospital of Oklahoma

The Lesion for a Specific Contact Force is Equivalent for All Catheters?

- 1. Yes
- 2. No

Soft-Touch catheters reduce tissue distension and force on cardiac tissue

Stereotaxis Safety -Electrophysiology

Conventional

Soft Touch Magnetic

Conventional catheter applied 4 times as much force compared with a magnetic catheter

Force Required for Stable Tissue Contact

- Stiffer catheter shafts require more force to maintain stability
- Magnetic catheters remain stable at lower contact forces

*Model-estimated forces Courtesy: Prof. K.H. Kuck

Dynamic Phantom: Both Catheters in Contact?

Manual Catheter @ 6g

Magnetic Catheter @ 6g

Dynamic Phantom

Manual Catheter

Magnetic Catheter

Magnetic Catheter Maintains More Consistent Contact During Simulated Heart Cycle

Dynamic Phantom Lesion Depth in Chicken

4mm Lesion Depth 6 Manual 1 Manual 2 5 Magnetic 4 Lesion Depth (mm) 3 2 1 0 -10 15 20 25 30 0 5 35 Average Force (g)

* n = 15 for all points

ynamic Phantom esion Volume in Chicken

^{*} n = 15 for all points

Safety

• Perforation

• Radiation

• Automation and Replication

Excellent Safety, especially in Complex Cases Complication Rate <u>without</u> Magnetic Navigation*

With Magnetic Navigation, reported complication rate is less than 0.1%**

* Source: Reynolds et al. Heart Rhythm. May Suppl. 2007

** Data on file

Perforation

 Perforation is a combination of pressure and ablation power

	AF Ablation - Perforation risk	
	Outcomes After Cardiac Perforation During Radiofrequency Ablation of the Atrium	
	T. JARED BUNCH, M.D., SAMUEL J. ASIRVATHAM, M.D., PAUL A. FRIEDMAN, M.D., KRISTI H. MONAHAN, R.N., THOMAS M. MUNGER, M.D., ROBERT F. REA, M.D., LAWRENCE J. SINAK, M.D., and DOUGLAS L. PACKER, M.D.	
	From the Division of Cardiovascular Disease, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA Cardiac Perforation During Radiofrequency Ablation . <i>Background:</i> Perforation during catheter procedures in either the atrium or ventricle is relatively uncommon, but potentially fatal if tamponade ensues. This study analyzes the occurrence and outcomes of cardiac perforation during catheter-based radiofrequency ablation procedures in the left atrium. <i>Methods:</i> All patients with a periprocedure perforation who have undergone radiofrequency ablation for	
<i>Results:</i> Of 632 procedures performed from January 1999 to October 2004, 15 (2.4%) were complicated by perforation requiring pericardiocentesis.		
	an effusion before overt instability in 11 (73.3%). Thirteen (86.7%) patients developed a blood pressure <60 mmHg. The pressure stabilized in all patients after pericardiocentesis (hypotension to intervention: 10.1 ± 5.1 minutes). The total blood volume removed was 848 ± 880 mL (left atrium/right atrium: 1,074 ± 1,002 vs right ventricle: 396 ± 266, P = 0.168). Two patients required surgery to close left atrium dome perforations. The ablation was completed in 7 (46.7%) patients. Ten (66.7%) later developed early reoccurrence of AF.	
occur in the lef	The incidence of perforation during ablation of the left atrium is low. Most ft atrium; however, few require surgical closure. Although less than with uncom ajority of patients with complete ablations achieve long-term elimination of AF.	

111111

Electrophysiol, Vol. 16, pp. 1172-1179, November 2005)

Coronary Cusp VT

Remote Magnetic Navigation to Map and Ablate Left Coronary Cusp Ventricular Tachycardia

J. DAVID BURKHARDT, M.D., WALID I. SALIBA, M.D., ROBERT A. SCHWEIKERT, M.D., JENNIFER CUMMINGS, M.D., and ANDREA NATALE, M.D.

28-year-old male patient with symptomatic paroxysmal monomorphic NSVT/PVCs

25mm/s 10mm/mV 150Hz 005E 12SL 250 CID: 19

EID:23 EDT: 13:20 06-FEB-2006 ORDER: 256788740 ACCOUNT: 0999

Page 1 of 1

LV Navigation: TS Inferior Base

LV Navigation: TS Inferior Wall

LV Navigation: Anterior Wall

Data Suggest That Magnetic Ablation is Inferior in VT Due to Lower Contact Forces

- 1. True
- 2. False

Endo-epicardial ablation of ventricular arrhythmias in the left ventricle with the Remote Magnetic Navigation System and the 3.5-mm open irrigated magnetic catheter: Results from a large single-center case-control series

Luigi Di Biase, MD,*^{†‡} Pasquale Santangeli, MD,*[§] Vladimir Astudillo, MD,* Sergio Conti, MD,* Prasant Mohanty, MD,* Sanghamitra Mohanty, MD,* Javier E. Sanchez, MD,* Rodney Horton, MD,*[†] Barbara Thomas, RN,* J. David Burkhardt, MD, FHRS,* Andrea Natale, MD, FACC, FHRS*[†]

Table 1 Baseline characteristics

	Stereotaxis	Manual	Р
Baseline characteristics	(n = 110)	(n = 92)	value
Age	56 ± 15	58 ± 15	0.467
Male	75 (68%)	52 (57%)	0.088
Hypertension	64 (58%)	54 (59%)	0.941
Diabetes	17 (16)	13 (14%)	0.792
Hyperlipidemia	44 (40%)	29 (32%)	0.212
BMI	28 ± 4	27 ± 3	0.924
LVEF	40 ± 14	44 ± 15	0.330
COPD	9 (8%)	8 (9%)	1.000
Previous PCI or CABG	19 (17%)	13 (14%)	0.542
ICD implanted	45 (41%)	38 (41%)	0.094
Structural heart disease	(12.0)		
Ischemic cardiomyopathy	33 (30%)	35 (38%)	0.228
Nonischemic cardiomyopathy	14 (13%)	14 (15%)	0.610
No structural heart disease	63 (57%)	43 (47%)	0.135
Baseline BBB	(,	(,	
LBBB	10 (9%)	8 (9%)	1.000
RBBB	9 (8%)	9 (10%)	0.806
None	91 (83%)	75 (82%)	0.824
Medication		. ,	
Amiodarone	20 (18%)	19 (21%)	0.423
Beta-blocker	47 (¥43%)	33 (36%)	0.321
Ca+ channel blocker	10 (9%)	7 (8%)	0.802
Mexiletine	13 (12%)	12 (13%)	0.489
Dofetilide	22 (20%)	14 (15%)	0.376
Flecainide	7 (6%)	9 (10%)	0.438
Sotalol	5 (5%)	7 (8%)	0.387
Other AADs	8 (7%)	5 (5%)	0.775
Electrophysiological study			
Procedure time, hr	3.3 ± 1.1	2.9 ± 1.2	0.040
Fluoroscopy time, min	26 ± 14	35 ± 22	0.033
RF time, min	33 ± 18	24 ± 12	0.005
Clinical morphology of VT			
PVC	84 (76%)	73 (79%)	0.612
Sustained VT	26 (24%)	19 (21%)	0.612
VT induced	79 (72%)	63 (68%)	0.605
VT cycle length	373 ± 106	369 ± 83	0.618
Site of ablation			
LCC	15 (14%)	12 (13%)	0.902
AMC	8 (7%)	7 (8%)	1.000
Septum	26 (24%)	26 (28%)	0.454
Lateral wall	18 (16%)	14 (15%)	0.824
Anterior wall	12 (11%)	9 (10%)	0.822
Coronary sinus	13 (12%)	9 (10%)	0.821
LV apex	7 (6%)	5 (5%)	0.387
Inferior wall	3 (3%)	5 (5%)	0.473
Mitral valve annulus	8 (7%)	6 (6%)	1.000
Type of LV access	70 (6(8))	EC (CAN)	0.000
Antegrade approach	70 (64%)	56 (61%)	0.686
Retrograde approach Both	34 (31%)	31 (34%)	0.673
Buti	6 (5%)	5 (5%)	1.000

Di Biase L., Burkhardt Natale A et al., Heart Rhythm 2010

Di Biase L.,Burkhardt Natale A et al. , Heart Rhythm 2010

• Epicardial Mapping

Sensei[™] Robotic Catheter System Clinical Advantages

- ✓ Stable and repeatable 3D catheter control
- Able to measure, display and vary the force exerted on the catheter tip
- ✓ Compatible with ICE, fluoro, 3D mapping
- ✓ Reduction in radiation exposure
- ✓Allows physician to remain seated

Economic Advantages

- ✓ Fits existing EP lab suites
- Can be configured to serve multiple procedure rooms
- ✓ Fraction of the cost of magnetic guidance
- ✓ Uses existing catheters

In the U.S., the safety and effectiveness of this device for use with cardiac ablation catheters, in the meanment of cardiac amb thrmiss, including a triangle in the second s

Clinical Experience

- Average procedure time similar to manual procedure time
- Average fluoroscopy time similar to manual procedure time
 - Early data from test sites using the CoHesion integrated system with SJM show fluoroscopy times as low as 10 minutes

600+ clinical cases postclearance have used Sensei technology in complex electrophysiology procedures

Physician Workstation

- Primary interface with the Artisan™ Control Catheter
- Accurate catheter control in 3 dimensions
- Catheter response scalable up to 1:10 ratio
- Multiple monitors display EP and visualization data

Robotic Catheter Manipulator

- Houses the Artisan Control Catheter
- Catheter tip replicates the hand movements of the physician at the instinctive motion controller
- Easily attaches to the procedure table

Artisan[™] Control Catheter

- Comprised of steerable inner and outer guide catheters
- Tight bend radius, 270° deflection in any direction
- Accommodates pre-approved existing catheters
 - 8.5 Fr. through lumen

In the U.S., the safety and effectiveness of this device for use with cardiac ablation catheters, in the

IntelliSense[™] Fine Force Technology

- Provides real-time measurement and display of the proximal force along the shaft of the percutaneous catheter
- Discerns small variations in force and displays them in a clear visual format
- Allows physicians to vary the force exerted when needed.

IntelliSense[™] Fine Force Technology

...measures & displays proximal forces on the working catheter

...early pre-clinical work suggests strong link between force and map quality¹

¹ Okumura Y, Johnson S, Bunch J, Henz B, O'Brien C, Packer D. A Systematical Analysis of *In Vivo* Contact Forces on Virtual Catheter Tip/Tissue Surface Contact during Cardiac Mapping and Intervention. *J Cardiovasc Electrophysiol* 2008. *In Press*

CoHesion[™] 3D Visualization Module

Imaging Integration

EnSite data import

Hansen Robotic Catheter System™

Instinctive Motion Controller

Robotic Catheter Manipulator and Set-Joint

RCM and Setup Joint

Steerable Guide Catheter (SGC) and Steerable Sheath

Questions?