

Winter Arrhythmia Annual Cardiac Arrhythmia Meeting School

Division of Cardiology, University of Toronto

Optimization of CRT in non-responders

Arnold Pinter St. Michael's Hospital

14th Annual Collingwood, Ontario, February 10 -12, 2017

Disclosure

- I don't like heart failure
- There was no CRT when I went into EP

Definition of (non)-responder

Study	Definition of CRT response	Follow-up (months)	Predictors of CRT response
Lecoq et al. ⁶⁸	Alive, no HF readmission, > 1 NYHA dass improvement (or > 10% increase in peak VO ₂ and 6MW)	6	QRS shortening during CRT
Achilli et al. ⁶⁹	Improved clinical composite score and LVEF increase ≥ 5%	6	Smaller LVESD, longer interventricular mechanical delay
MIRACLE/ MIRACLE ICD ^{6,7}	Alive and > 1 NYHA class improvement	1, 3, and 6	None
Yeim et al. ⁷⁰	> 1 NYHA class improvement and no HF admission	6	Nonischemic etiology, wider baseline QRS width, QRS shortening during CRT
Mollema et al. ⁷¹	≥ 1 NYHA class improvement or 10% decrease in LVESV	6	None
PROSPECT ⁷²	Improved clinical composite score and LVESV decrease > 15%	6	None
Buck et al. ⁷³	LVESV decrease > 10%	6	Interlead distance > 127 mm, septal- lateral delay > 60 ms, nonischemic etiology, LV end-diastolic diameter < 67 mm, use of ACE inhibitor, absence of tricuspid regurgitation
Rickard et al. ⁷⁴	LVESV decrease $\geq 10\%$	> 2	Wider QRS
MADIT-CRT ⁷⁵	% decrease in LVEDV and response score	12	Female, nonischemic etiology, LBBB, QRS > 150 ms, previous HF hospitalization, LVEDV > 125 mL/ m ² , left atrial volume < 40 mL/m ²
PROSPECT-ECG ^{57,76}	Improved clinical composite score, LVESV decrease ≥ 15%	6	LBBB morphology, LV paced QRS width and QRS shortening

Parkash R et al. Can J Cardiol 29:1346-60

Responder? Non-responder? Responder?...

Fornwalt et al. Circulation 2010;121:1985-91

Gasparini M: JACC 2013;61:945-947

Burns KV et al. JACC HF 2015;3:990-7

Response to CRT is Dependent Upon Multiple Factors

^{1338.}

Potential reasons for non-response

Mullens W et al. JACC 2009;53:765-773

What to optimize?

• Patient

- Medication optimization
 - Uptitration of neurohormonal blockers + dietary protocol¹
- Exercise training
 - 30 min supervised exercise x3/week²
- Atrial fibrillation
- PVC
- Device

• Timing

- 1. Mullens W et al. Am J Cardiol 2011;108:409
- 2. Patwala AY et al. JACC 2009;53:2332

What to check on the ECG?

Atrial rhythm—NSR or atrial paced vs. atrial fibrillation Evidence of appropriate atrial sensing or capture Presence of ventricular pacing Presence, frequency, and morphology of PVCs Evidence of appropriate ventricular sensing or capture Morphology of paced QRS—evidence of LV capture Paced ORS width Evidence of pacing fusion or pseudo-fusion in QRS

What is a promising QRS morphology?

Sweeney MO, Circulation 2010; 121:626

BiV pacing % and survival

Hayes DL et al. Heart Rhythm 2011;8:1469-75

What does this Holter show?

Devices overestimate effective biV pacing

Kamath GS et al. JACC 2009;53:1050-5

A Significant Percentage of Patients Do Not Achieve Optimal BiV Pacing %

Reasons for < 100% pacing

- Atrial fibrillation
- PVC's
- Competitive AV nodal conduction

In a cohort of > 80,000 patients, 40.7% exhibited less than 98% BiV pacing

If we can overcome RVR...

Hayes DL et al. Heart Rhythm 2011;8:1469-75

AVJ ablation vs medical rate control: Mortality in CRT patients with AF

Study name			Risk ratio	
	Risk ratio	p-Value	and 95% CI	
Gasparini 2008	0.416	0.008		
Ferreira 2008	0.593	0.354		
Dong 2010	0.323	0.024		
	0.419	0.000		
		0.01 0.1 1 10 100		
		Fav	ors AVNA+ Favors AVN	

Ganesan AN et al. JACC 2012;59:719-26

What to re-synchronize?

Yu C-M, Chau E, Sanderson J, et al. Circulation 2002;105:438-445

Optimal AV Delay Improves hemodynamics

Auricchio A, et al. Association between preload and optimal pacing mode

Heart Failure Society of America 1998.

INE ETTECT OF AV DEIAY ON MITTAI inflow Too short Just right Too long

Gorcsan et al. J Am Soc Echocardiogr 21:191-213

Iterative Method: Allowing Enough Time for Complete Filling of LV

Optimal AV delay reduces MR

intrinsic

VV = 0 ms

VV = -20 ms

Bax et al. JACC 46:2168-82

Studies of systematic AV/VV timing optimization

Study	Comparison	Results
RHYTHM II ⁸³	Echo-optimized VV timing vs nominal VV settings	No difference in QOL, NYHA or 6MW
DECREASE-HF ⁸⁵	Simultaneous VV pacing vs EGM optimized VV timing	No difference in LV volumes or EF
FREEDOM ⁸⁶	Clinically optimized AV and VV timing vs serial EGM optimized AV and VV timing	No difference in clinical outcomes or functional measures
CLEAR ⁸⁴	Echo optimized AV and VV timing vs automatic adjustment of AV delays via contractility sensor	Improved clinical response with the contractility sensor
SMART AV ⁸⁷	Echo optimized AV and VV timing vs EGM optimized AV and VV timing vs fixed AV (120 ms) and VV (0 ms)	No difference in LV volumes, EF, or functional measures

Parkash R et al. Can J Cardiol 29:1346-60

Typical results of AV delay assessment

Scharf et al. PACE 28:279-84

Theoretical limitations to optimization

- Optimal AV and VV delay individually changes during exercise compared with rest¹
- Most optimization methods are performed at rest
- Most patients have NYHA Class III
 - they have exertional symptoms, so they would symptomatically most benefit from exercise optimization
 - they spend most of their time resting, so resting optimization would have the biggest impact on reverse remodelling

1. Golovchiner G, Can J Cardiol

Synchronized LV pacing

Birnie D et al. Heart Rhythm 2013;10:1368-74

Optimization methods

• Echo based

- mitral inflow
- aortic/LVOT VTI
- Tissue Doppler
- 3D
- EGM based
 - Quick Opt (SJM)
 - Expert Ease (Boston/Guidant)
- Hemodynamic methods
 - SonR (Sorin)
 - invasive (research)
- Other
 - Acoustic (Audiocor)
 - Impedance cardiography
 - Isotope methods
 - photopletizmography

Parkash R et al. Can J Cardiol 29:1346-60

Composite end-point after optimization visit

Mullens W et al. JACC 2009;53:765-773