

Driving with Cognitive Impairment ... and how to deliver the message

Winter Arrhythmia Program 2017

Mark Rapoport, MD, FRCPC Associate Professor, Dep't of Psychiatry

With appreciation

Disclosures

- CIHR
- Alzheimer Society of Canada
- Brain
 Canada/Chagnon
 Family
- PSI
- No industry funding

Acknowledgments

- Gary Naglie
- Shawn Marshall
- Frank Molnar
- Carla Zucchero-Sarracini
- Duncan Cameron
- The Candrive Group

Learning Objectives

- To understand dementia-related driving risks.
- To discuss a practical approach to disclosure of unfitness to drive.

Beware of Shared Delusion

"The one thing that unites all human beings, regardless of age, gender, religion, economic status or ethnic background, is that, deep inside, we ALL believe that we are above average drivers."

Older drivers

- Fastest growing segment of licensed population
- Vast majority continue to be safe to drive
- Often unfairly characterized by the media

2009 Canada 65+

Turcotte, Profile of seniors' transportation habits. Statistics Canada, 2012 Sunnybrook

HEALTH SCIENCES

when it matters MOST

Figure 1: Involvement in crashes per million miles travelled by driver age. Reprinted from: Williams AF. Teenage drivers: patterns of risk. *J Safety Res* 2003;34:5-15, with permission from Elsevier.

Fatal Crashes

Figure 2: Involvement in fatal crashes per hundred million miles travelled by driver age. Reprinted from: Williams AF. Teenage drivers: patterns of risk. *J Safety Res* 2003;34:5-15, with permission from Elsevier.

HEALTH SCIENCES CENTRE

when it matters MOST

- Older drivers
 - high crash rate per miles driven (though not the highest)
 - crash for different reasons than younger persons
 - involved in different types of crashes
 - once involved in a crash highest mortality and morbidity of any age group

- Why do older persons have relatively high crash rates?
 - not "age" in itself
 - the increasing prevalence of medical and functional conditions that affect driving ability

Driving and Medical Conditions

- Numerous medical conditions associated with crashes:
 - Sensory and Motor Conditions
 - Vision
 - Movement (e.g. arthritis, pain)
 - Mental Functioning
 - Abrupt changes (e.g. seizure, cardiac, cerebro-vascular)
 - Fluctuating (e.g. diabetes, psychiatric conditions)
 - Progressive (e.g. dementia, respiratory)
- Prevalence of these conditions increases with age

MOST

Studies of crash risk in dementia

- Systematic review 2007
- 6 studies, 2 of highest quality(8/9 on Ottawa-Newcastle)
 - BC: Cooper et al, 1993
 - Drivers with at least one collision 43 (26.1%) dementia vs 19 (11.5%) comparison.
 - Michegan: Trobe et al, 1996;
 - Event Rate/ Driver years 0.08 crashes/driver years in dementia AND comparison

Man-Son-Hing et al, J Am Geriatr Soc 55:878–884, 2007 Cooper et al Journal of Safety Research Vol. 24, 9-17, 1993 Trobe et al, Arch Neurol. 1996;53:411-416, 1996

10 years, two studies (proxy/state). Retrospective – one negative, one 4x risk

.... In contrast.....

Meta-Analysis of the Risk of Road Test Failure Associated with Dementia

	Dementia		Healthy Elderly		Risk Ratio			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI		
Lincoln 2006 (1)	4	37	0	31	19.6%	7.58 [0.42, 135.51]	2006		• •	
Ott 2008 (2)	13	84	0	44	20.8%	14.29 [0.87, 234.93]	2008	8	• •	
Davis 2012 (3)	1	59	0	44	16.2%	2.25 [0.09, 53.95]	2012	1	•	
Barco 2015 (4)	37	60	1	32	43.4%	19.73 [2.84, 137.23]	2015		— ∎ →	
Total (95% CI)		240		151	100.0%	10.77 [3.00, 38.62]				
Total events	55		1							
Heterogeneity: Tau ² =	= 0.00; Cl	$hi^2 = 1$	50, df = 3	(P = 0.6)	8); $I^2 = 0$	%			1 10 100	
Test for overall effect: $Z = 3.65$ (P = 0.0003)								Favours Healthy Elderly	Favours Dementia	

Driving Performance Outcomes

Large Effects:

- Aksan et al (2015) Secondary Driving Task Performance, Landmark identification, Route-following
- Barco et al (2015) Driving Situation Errors
- Davis et al (2012) Road Test Error Scores
- Eby et al (2012) Lost trips, miles belted, miles driven with short headway, miles driven 10mph or more slower than surrounding traffic.
- Whehilan et al (2005) Road Test Error Scores

Medium Effects

- Aksan et al (2015) Safety errors, lane observance, turns
- Barco (2015) Errors turning right or driving straight

Driving Cessation

- Psychosocial consequences
 - Depression
 - Social isolation
 - Loss of self esteem
 - Many report "worse than death"
 - Impact on patient/physician relationship

How To

- Document re: Driving
- Ask Family.
- Review cognition, behavior, function, hearing, motor, and sensory function.
- Rule out significant dangerous medical conditions (eg. Seizure disorder, sleep apnea, stroke, PD), medications (esp anticholinergic) and substances.
- Decide on referral for specialized testing.
- Give feedback.

MOST

Molnar, Byszewski, Rapoport, Dalziel, Geriatrics & Aging, 2009

Disclosure

- 1. Preparatory meeting with family.
 - Set ground rules/educate
 - Put family in a supportive role.
 - Address family resistance
- 2. Meeting with patient and family
 - Ground rules and educate
 - Give patient positive role.
 - Address patient resistance
- 3. Post-disclosure
 - Letter
 - Documentation
 - Alternate transportation plans
 - Dealing with difficult situations

Molnar, Byszewski, Rapoport, Dalziel, Geriatrics & Aging, 2009

Summary

- Not the same as driving in the elderly.
- Many cognitive skills required.
- Dementia increases crash risk, but also decreases exposure. Not enough info.
- Drivers with dementia are persistent.
- Many patients in the early stages may be safe to drive.
- Cognitive testing limited predictive ability. We need better tools.
- Individualized assessment needed. We need to make this practical and affordable.
- Behavioral changes play a significant role, especially psychosis, apathy and depression.
- Legislation Safety outweighs autonomy, very challenging to balance, and doctors are not reporting.

MOST