

ATLAS – Avoid Transvenous Leads in Appropriate Subjects

Guy Amit MD Hamilton ON

ATLAS – Avoid Transvenous Leads in Appropriate Subjects

Study Sponsor – Population Health Research Institute

Principal Investigators -

- Dr. Jeff Healey Hamilton Health Sciences
- Dr. Blandine Mondesert Montreal Heart Institute

- 1. Rationale for the trial
 - 2. Hypothesis
 - 3. Objectives
- 4. Inclusions/exclusions
- 5. Design/timing
- 6. Primary outcomes
- 7. Secondary outcomes
- 8. Role of BSC
- 9. What happens next?

- The transvenous lead
 - The least reliable component of the ICD system
 - Premature revision of the system in 2-20% of patients during the typical lifespan of an ICD generator.
 - Many of these revisions and associated complications could be avoided if a lead was not placed in the vasculature or heart.

Complications due to Transvenous Leads

Annual Cardiac Arrhythmia Meeting Division of Cardiology, University of Toronto

Winter Arrhythmia

School

Séminaire

Complication	Estimated Rate	Source
Early avoidable, lead-related complications		
Pneumothorax/hemothorax	1.5% at 30-days	SIMPLE trial, Pacemaker meta- analysis, ICES ICD registry
Cardiac perforation, effusion, tamponade, pericarditis	1.0%	SIMPLE trial, ICD meta-analysis
Lead dislodgement, loss of sensing/pacing	3.0%	Pacemaker meta-analysis, clinical estimate, ICD meta-analysis
New, severe tricuspid insufficiency	3%	Sadreddini cohort
Ipsilateral upper extremity DVT	0.3%	Clinical estimate
Need to revise dialysis access	0.2%	Clinical estimate
Total	9%	
Other early complications		
Death	0.6%	SIMPLE trial
Myocardial Infarction	0.1%	SIMPLE trial
Stroke	0.2%	SIMPLE trial
Significant wound hematoma	2.3%	SIMPLE trial
Device-related infection	1.3%	SIMPLE trial, Pacemaker meta- analysis. Clinical estimate
Total	4.5%	

- D- distal electrode
- P- proximal electrode
- C- coil

Séminaire Winter Arrhythmia Annual Cardiac Arrhythmia Meeting School

Annual Cardiac Arrhythmia Meeting Division of Cardiology, University of Toronto

Bardy GH, et, NEJM 2010

Séminaire Winter Arrhythmia Annual Cardiac Arrhythmia Meeting Division of Cardiology, University of Toronto

□ Single Zone (n=88)

Weiss R, et al Circulation 2013

Annual Cardiac Arrhythmia Meeting Division of Cardiology, University of Toronto

Boersma et al Performance and outcomes in patients with the Subcutaneous Implantable Cardiac Defibrillator Mid-term follow-up. May 6th 2016 HRS LBCT1

Demographics¹

Percent

38.5%

3.5%

2.1%

9.3%

11.7%

11.9%

31.1%

18.6%

6.0%

2.3%

2.2%

1.2%

Secondary Prevention Primary Prevention EF ≤35 30.6%		
35.1%		Non-ischaemic
Other Pr	imary Prevention	ARVC
Other Fr	34.3%	Congenital
		Dilated
		HCM
		Unspecified/Other
		Ischemic
		- Inherited
Variable	Percent	Idiopathic VF
Average Age	48 ± 17	Valvular Disease
Percent Male	72%	Other
Ejection Fraction	43% ± 18%	
QRS width, msec	106 ± 25	CHF
BMI	27 ± 6	ortless registry at 3
	Enc	

years, HRS 2016

S-ICD was as effective as TV-ICD in treating spontaneous arrhythmias when compared to studies with TV-ICD

	Spontaneous	Spontaneous Shock Efficacy		
	First Shock	Final Shock in episode		
S-ICD* EFFORTLESS 3 year Analys	is ¹ 88.5%	97.4%		
S-ICD Pooled 2 year Analysis ²	90.1%	98.2%		
SIMPLE Testing Group ³	88.5%	95.7%		
SIMPLE No Testing Group ³	92.0%	94.8%		
SCD-HeFT ⁴	83%			
PainFree Rx II ⁵	87%			
MADIT-CRT ⁶	89.8%			
LESS Study ⁷		97.3%		
* S-ICD Pooled Data excluded VT/VF Storm events				
S-ICD_Data Of 4 100% Clinical conversion to normal sinus rhythm				

Effortless registry at 3 years, HRS 2016

Séminaire

Winter Arrhythmia

Boston

School

Séminaire Winter Arrhythmia Annual Cardiac Arrhythmia Meeting School

Annual Cardiac Arrhythmia Meeting Division of Cardiology, University of Toronto

PP vs SP

A

.Boston

This 3 year follow up data demonstrates that the need for pacing after implant of the S-ICD continues to be low

	EFFORTLESS ¹	S-ICD Pooled Data ² Number/ (% of Patients)
Extraction of S-ICD for new Pacing Indication	1/ (0.1%)	1/(0.1%)
Extraction of S-ICD for new ATP Indication	5 (0.5%)	1/(0.1%)
Extraction of S-ICD for new CRT Indication	4 (0.4%)	1/(0.1%)

1 Boersma et al. EFFORTLESS 3 year results May 6th 2016 HRS LBCT. 2 Burke MC et al. Pooled Analysis of the EFFORTLESS and IDE Registry.

Bostona

Conclusions

- The EFFORTLESS registry provides the largest S-ICD database in the world
- Primary Endpoints of the full 985 pt cohort with 1-yr follow-up show:
 - ✓ Freedom from complications caused by the S-ICD was high (97.9%)
 - ✓ Inappropriate Shock rate for AF/SVT was low (1.5%)
- · All cause complications were low across cohorts, declining with experience
 - Zero electrode failures in this study
 - ✓ Zero endovascular or systemic infections
- Acute conversion efficacy for induced VT/VF episodes was high (99.5%)
- Appropriate therapy was clinically effective in all but 1 pt with VF storm
 - ✓ Ischemic etiology was not a predictor for repeated MVT episodes
- The S-ICD continues to show adequate clinical performance
- 3.8% modeled rate of IAS with SmartPass is similar to rates seen in patients with a TV-ICD

TABLE 2	Clinical	Endpoints*	

Complications	S-ICD	KM Rate, %	TV-ICD	KM Rate, %
Appropriate therapy	12	17.0	39	31.3
ATP			28	21.8
Shock	12	17.0	24	21.3
Inappropriate shocks	20		22	
Oversensing	17	17.1	1	1.2
Supraventricular tachycardia	3	4.2	21	17.6
Deceased	2		6	
Noncardiac	1	2.0	3	2.6
Cardiac	1	2.0	2	1.7
Unknown	0	0	1	0.9
% nude number of estionts in the first E years and the adjusted Vanlan Major rate				

Number at Transvenou Subcutane

a 01

Hypothesis:

Compared to standard, single-chamber transvenous implantable cardioverter defibrillators (TV-ICDs), the use of a sub-cutaneous ICD (S-ICD) will result in fewer perioperative and long-term device-related complications, and will have a similar rate of failed appropriate clinical shocks and arrhythmic death.

Primary Objective:

To compare the rate of perioperative complications, measured at 30days following implant, between patients receiving an S-ICD compared to those receiving a TV-ICD.

Secondary Objectives:

- 1. To determine if the S-ICD is associated with fewer long-term device-related complications.
- •
- 2. To determine if the S-ICD has a similar effectiveness for the treatment of ventricular arrhythmias and is associated with a similar risk of failed appropriate ICD shock and/or arrhythmic death

Any standard ICD indication with

- Age 14 60 years old with; <u>OR</u>
- Patients ≥ 14 years old with:
 - An inherited arrhythmia syndrome (i.e. Long QT, Brugada, ARVC, hypertrophic or dilated cardiomyopathy, early repolarization syndrome, idiopathic ventricular fibrillation, etc.)
 - Prior pacemaker or ICD removal for infection
 - Need for hemodialysis
 - Prior heart valve surgery (repair or replacement)
 - Chronic obstructive pulmonary disease (with $FEV_1 < 1.5 L$)

Exclusion Criteria

- Mechanical tricuspid valve
- Fontan repair
- Ventricular septal defect with right-to-left shunt
- Known lack of upper extremity venous access
- Need for cardiac pacing for bradycardia indication
- PR interval of > 240 msec

- Patients will be randomized to receive either a TV-ICD (control arm) or an S-ICD (experimental arm).
- S-ICD implantation will be performed by investigators with a minimum experience of 5 implants.
- Safety will be assessed by comparing a composite of safety parameters measured at 30 days following implant.
- Patients will be followed for between 12 and 72 months to measure:
 - late device-related complications;
 - mortality (total and arrhythmic death);
 - the rate and success of appropriate ICD therapies.
- All patients will have standardized programming of ICD therapies to allow comparison between treatment arms.

- 500 patients enrolled in any interested Canadian centre meeting the participation criteria.
- Patients will be enrolled over a 24 month period with the primary outcome assessed 30 days after the last patient is enrolled.
- Analysis of the primary results will be completed within the following 6 months.
- Patients will then enter a long-term follow-up phase for an additional 48 months. Remote monitoring.
- Any device-related complications (i.e. infection, lead fracture) will be captured by an in-person special visit.

30 – day composite of <u>lead-related perioperative</u> complications, including:

- Hemothorax or pneumothorax
- Cardiac perforation, tamponade, pericardial effusion or pericarditis
- Lead dislodgement or loss of pacing/sensing requiring revision
- New moderate-severe or severe tricuspid insufficiency (3+ or 4+)
- Ipsilateral upper extremity deep venous thrombosis

A secondary 30-day safety composite will include the following, in addition to the above complications:

- Device-related infection requiring surgical revision, Significant wound hematoma (requiring evacuation or interruption of oral anticoagulation)
- Myocardial infarction, Stroke, Death

Secondary Outcomers of Cardiology, University of Toronto

- Late (> 30 days post-operative), device-related complications, including:
 - Lead dislodgement or fracture, or loss of adequate sensing or pacing
 - Device-related infection
 - Pericarditis or pericardial effusion
 - New severe tricuspid insufficiency
 - Ipsilateral upper extremity deep venous thrombosis
 - Need to revise dialysis access
 - Need to revise ICD to deliver pacing or ICD revision for any reason
- Occurrence of failed appropriate shock or arrhythmic death
- Hospital or clinic visits for ICD therapy (shocks or ATP, both appropriate and inappropriate), device-related complications, arrhythmia or heart failure
- Any inappropriate shock