

Ablation at the time of ICD implantation in secondary prevention patients? - Yes

llan Lashevsky MD

- None
- The following presentation is not meant to offend anyone. It all comes with good intentions.

In the beginning God created the heavens and the earth. The earth was formless and void, and darkness was over the surface of the deep, and the Spirit of God was moving over the surface of the waters (Genesis)

The next day God created

President Obama

ICD

Secondary prevention trials: CIDS, AVID, CASH

Primary and CRT prevention trials : MUSTT, MADIT // SCD-Heft and others

Maybe the concept is too old?

The first to challenge the accepted concept -DANISH trial

Maybe it's time for real changes (I want ablation now!)

Grumpy Trump

Secondary ICD implantationclinical considerations

- ICDs effectively terminate VT, but do not prevent VT episodes
- Recurrent of VT up to 30% in the first year
- ICD shocks are associated with more cardiac death
- 5% may not respond to ICD shock (EMD, failure to shock)

Survival After Shock Therapy in Implantable Cardioverter-Defibrillator and Cardiac Resynchronization Therapy-Defibrillator Recipients According to Rhythm Shocked

The ALTITUDE Survival by Rhythm Study

Risk of Death After First Shock Compared With No-Shock Matched Group

J Am Coll Cardiol 2013;62:1674-9

Figure 1 Survival Based on Rhythm Shocked

Altitude, J Am Coll Cardiol 2013;62:1674-9

significance

Heart Rhythm, Vol 7, No 3, March 2010

MADIT II sub study (Huang, HR: 11/2007)

The VTACH trial investigated the role of prophylactic catheter ablation followed by ICD implantation in patients with a first episode of stable VT after MI

 Patients eligibility: Stable VT X1
 Previous MI
 Reduced LVEF (< 50%)
 ICD

	Ablation (n=52)	Control (n=55)	Hazard ratio (95% CI)	p value
Time to first VT or VF (months, mean [SD]; median [IQR])	15.9 (1.7); 18.6 (2.4*)	11-3 (1-5); 5-9 (0-8–26-7)	0.61 (0.37-0.99)	0.045†
24-month event-free survival estimates (%)‡				
VT recurrence (category 1)	46.6%	28.8%	0.61 (0.37-0.99)	0.045†
VT recurrence (all categories)	46.4%	28.8%	0.61 (0.38–1.01)	0.051†
Hospital admission for cardiac reasons	67.4%	45·4%	0.55 (0.30-0.99)	<mark>0·044</mark> †
VT storm	75.0%	69.7%	0.73 (0.36–1.50)	0·395†
Syncope	96.2%	85.4%	0.36 (0.07-1.81)	0.197†
Death	91.5%	91.4%	1·32 (0·35–4·94)	0.677†
Appropriate ICD intervention (n [%])	26 (50-0%)	38 (69·1%)		0·051§
ICD shock (n [%])	17 (32·7%)	29 (52.7%)		0.051§

Free from

VTACH: An On-Treatment Analysis

JCE May, 2013

SMASH VT design (secondary prevention ablation trial)

- Previous MI (>1 mo)
- Planned (or had) for ICD VF, unstable VT, syncope with inducible VT (EPS)
- Primary ICD patients with a single shock
- Exclusion ongoing ischemia, recurrent VT (storm), AAD
- Follow up 22±5.5 months

Reddy, N Engl J Med 2007

Ablation Group (N = 64)	Control Group (N=64)	P Value
67±9	66±10	0.65†
59 (92)	52 (81)	0.12‡
8.8±8.5	7.9±7.8	0.66¶
		0.38‡
13 (20)	10 (16)	
30 (47)	33 (52)	
11 (17)	16 (25)	
10 (16)	5 (8)	
30.7±9.5	32.9±8.5	0.16†
37 (58)	30 (47)	0.29 <u>‡</u>
16 (25)	7 (11)	0.06‡
		0.37‡
54 (84)	49 (77)	
10 (16)	15 (23)	
47 (73)	43 (67)	0.35‡
24 (38)	32 (50)	0.21‡
46 (72)	40 (62)	0.35‡
3 (5)	8 (12)	0.21‡
0	0	<u> </u>
60 (94)	63 (98)	0.37‡
59 (92)	59 (92)	1.0‡
37 (58)	38 (59)	1.0‡
52 (81)	39 (61)	0.02 <u></u> ‡
		0.21‡
23 (36)	31 (48)	
41 (64)	33 (52)	
	Ablation Group (N = 64) 67±9 59 (92) 8.8±8.5 13 (20) 30 (47) 13 (20) 30 (47) 10 (16) 30 (47) 10 (16) 30.7±9.5 37 (58) 16 (25) 16 (25) 16 (25) 16 (25) 16 (25) 17 3 (58) 16 (25) 10 (16) 47 (73) 24 (38) 46 (72) 3 (5) 10 (16) 47 (73) 24 (38) 46 (72) 3 (5) 10 (16) 10	Ablation Group (N=64) Control Group (N=64) 67±9 66±10 59 (92) 52 (81) 8.8±8.5 7.9±7.8 13 (20) 10 (16) 30 (47) 33 (52) 11 (17) 16 (25) 10 (16) 5 (8) 30.7±9.5 32.9±8.5 37 (58) 30 (47) 16 (25) 7 (11) 16 (25) 7 (11) 54 (84) 49 (77) 10 (16) 15 (23) 47 (73) 43 (67) 24 (38) 32 (50) 46 (72) 40 (62) 3 (5) 8 (12) 0 0 0 0 60 (94) 63 (98) 59 (92) 59 (92) 37 (58) 38 (59) 52 (81) 39 (61) 23 (36) 31 (48) 41 (64) 33 (52)

SMASH VT

Table 2. End Points.*				
Variable	Ablation Group (N=64)	Control Group (N=64)	Hazard Ratio (95% CI)	P Value
	no. of pat	ients (%)		
ICD events*	8 (12)	21 (33)	0.35 (0.15–0.78)	0.007†
ICD shocks	6 (9)	<mark>20 (31)</mark>	0.27 (0.11–0.67)	0.003†
ICD storms	4 (6)	12 (19)	0.30 (0.09–1.00)	0.06‡
Death	6 (9)	11 (17)	0.59 (0.22–1.59)	0.29 <mark>†</mark>
Congestive heart failure	3 (5)	6 (9)		
Ventricular tachycardia storm	0	1 (2)		
Cancer	1 (2)	0		
Pulmonary embolism	1 (2)	0		
Unknown	1 (2)	4 (6)		

Reddy, N Engl J Med 2007

The importance of the randomized studies

The importance of these trials is not in the answers they provide, but rather the question they pose: is ICD all we can offer to our patients?

Who benefit from ablation the most?

Ablation in VT storm - ICM

Carbucicchio, Circulation 2008; 117: 462-469

Catheter Ablation of Electrical Storm in ICM/NICM

Am J Cardiol 2011;108:233-239

Ablation of VPCs in Channelopathy Murakoshi, Journal of Arr., 32(2016)404-410

Table 1

Summary of case reports of catheter ablation for ventricular tachyarrhythmias in patients with channelopathies,

					-					
Diagnosis	Authors	n	Age/Sex	Symptoms	Genes	VPC morphology/origin	Electrophysiology	Ablation	Outcome	Ref
BrS	Haïssaguerre et al.	3	39±7, 2 males, 1 female	Syncope, PVT, VF	SCN5A mutation (2850delT) in 1	#1 RVOT in 2 pts #2 LBBB superior axis/anterior; RV Pur- kinje network in 1 pt,	#1 CI: 340 \pm 20, 408 \pm 15 ms #2 CI: 278 \pm 29 ms	Successful ABL for VPCs	No rec (7 \pm 6 mo)	#7
	Darmon et al.	1	18, male	Frequent VF, PVT	Not described	Posterior RVOT	-	Successful ABL for VPCs and AT	No rec (6 mo)	#9
	Nakagawa et al.	1	41, male	VF storm	Not described	LBBB inferior axis/RVOT	CI: 390-450 ms	Successful ABL for VPCs	No VF rec (29 mo)	#10
	Nademanee et al.	9	38, all males	All had out-of-hospi- tal cardiac arrests.	Not performed	Not described	Low voltage $(0.94 \pm 0.79 \text{ mV})$, prolonged duration $(132 \pm 48 \text{ ms})$, and fractionated late potentials $(96 \pm 47 \text{ ms beyond QRS complex})$ in the anterior RVOT epicardium.	Successful ABL for substrate in the ante- rior of RVOT epicardium.	Only 1 of 9 pts had VF rec ($20 \pm 9 \text{ mo}$)	#8
	Sunsaneewitayakul et al.	10	36.5, all male	4 had frequent VF or storm; 6 had syncope or VF episodes.	Not performed	Posterolateral RV in 1 pt. No VPCs in 9 pts.	Late activation zone (where elec- trical activity was recorded by isopotential map within J point to J point + 60 ms) was observed in all patients.	Successful ABL for substrate at late acti- vation zone of RVOT. 1 pt. had CRBBB dur- ing procedure.	Modified Brugada ECG in 3 of 4 pts (75%) and no VF storm in 4 (100%) (12–30 mo).	#11
IVF	Aizawa et al.	1	13, male	Convulsion, VF	Not described	#1 RBBB/posterolateral LV #2 LBBB superior axis/RV	Fractionated activities were recor- ded at posterolateral LV, J wave (+).	ABL for VPCs	VF rec 1.5 mo after 1st ABL, but no rec 3 mo after 2nd ABL.	#23
	Ashida et al.	1	18, female	Syncope, TdP	Not described	LBBB inferior axis/RVOT	QT/QTc 0.39/0.3 ms. CI: 380 ms, J wave (-)	Successful ABL for VPC	No TdP and syncope (3 yr)	#13
	Takatsuki et al.	1	62, male	Syncope, VF	Not described	RVOT	CI: 320-330 ms, J wave (-)	Successful ABL for VPC	no VF rec (20 mo)	#14
	Haïssaguerre et al.	27	41 ± 14, 13 males, 14 females	VF (23 during daily activity and 4 during sleep); LQT and Bru- gada ECG were excluded.	12 pts had no mutations in <i>SCN5A</i> and <i>KCNH2</i>	RBBB 10, LBBB 13, both 4. #1 Purkinje system in 23 (LV sep- tum in 10, anterior RV in 9, both in 4) #2 RVOT in 4.	CI: 20–160 ms (75 ± 42) #1 The interval from the Purkinje poten- tial to the following myocardial activation: 10–150 ms (38 ± 28 ms) during premature beats, 11 ± 5 ms during sinus rhythm.	Successful ABL for VPCs	24 pts (89%) had no VF rec without drug $(24 \pm 28 \text{ mo})$. 3 pts had late rec.	#15
	Betts et al.	1	32, male	Syncope, VF storm	Not described	LBBB/RVOT free wall	CI: 260-300 ms	Successful ABL for VPC	No VF rec (11 mo)	#16
	Nogami et al.	1	54, male	Syncope, VF	No mutation in SCN5A	#1 RBBB inferior axis/LV sep- tum #2 RBBB northwest axis/LV	#1 CI: 280 ms #2 CI: 260 ms dia- stolic Purkinje potential and pre- systolic Purkinje potential were recorded from LV during PVT.	Successful ABL for VPC but isolated VPC was inducible.	No VF and syncope rec (4 yr) without drugs.	#18
	Noda et al.	16	39 ± 10, 7 males, 9 females	Syncope, VF, poly- morphic VT (VF in 5 pts)	Not described	LBBB 16/RVOT septum 13, free wall 3	CI: 409 ± 62 ms, CL: 245 ± 28 ms, polymorphic changes of the QRS complex during rapid pacing in 2 pts.	Successful ABL for VPCs in 13, partially successful in 3.	No syncope, VF, SCDs $(54 \pm 39 \text{ months}) (4 \text{ patients received a } \beta \text{-blocker}).$	#17
	Latcu DG et al	1	57, male	Aborted SCD, recur- rent VF	Not described	RBBB/inferoseptal LV near pos- terior hemibranch (small num- ber of VPCs)	J wave in inferior leads, no scar.	Successful ABL, J wave disappeared.	No VF rec and no occurrence of J wave (2 months).	#24
LQTS	Haïssaguerre et al	4	37 ± 8, 2 males, 2 females	Syncope, PVT, VF	No mutation in KCNQ1, KCNH2, and SCN5A	#1 LBBB inferior axis /RVOT in 1 pt. #2 RBBB superior axis/ Purkinje in LV in 1 pt. #3 Poly- morphic, repetitive (bidirec- tional) with a positive mor- phology in V1/ Purkinje in LV in 2 pts.	#1, #2 CI: 503 ± 29 ms. #3 PVT cycle length: 280–420 ms lasting 3 to 45 beats, Purkinje potential proceeded VPCs/repetitive beats.	Successful ABL for VPCs	No VF rec $(24 \pm 20 \text{ mo})$, 1 pt had a rec of VPCs.	#7
	Srivathsan et al	1	39, female	VF	Not described	Purkinje in midposterior septal LV	CI: 340 ms Purkinje potential pre- ceded VPCs by 30 ms.	Successful ABL for VPCs	No rec (6 mo)	#28

Who may benefit from ablation the most?

VT Ablation in Patients With Preserved LV Function (CAD, stable VT, LVEF>40%)

- 31 pts all had VT ablation
- Successful ablation achieved in: clinical 90% (28/31) and all inducible 58% (18/31)
- 13/31pts received ICD (ICD+)
- Mean LVEF 48 ± 6%
- Mean VT CL 348 ± 70msec (172bpm)
- F/U 3.8 ± 2.9 years
- No SCD in ICD (-) group

Clemens, JCE, Oct 2015

VT ablation in structural heart disease with preserved EF without ICD

- 166 patients had VT ablation only
- Control Group 378 pts with stable VT and ICD
- SHD ICM, NICM, ARVD
- Stable VT
- LVEF 50±10%
- F/U 32+27 months
- Results:
 - 87% successful ablation
 - **<u>12% all cause mortality (12% in the control group)</u>**
 - <u>2.4% SCD</u>
 - 12% required ICD

Maury, European Heart Journal (2014) 35, 1479-1485

ACCF/HRS/AHA/ASE/HFSA/SCAI/SCCT/SCMR 2013 Appropriate Use Criteria for Implantable Cardioverter-Defibrillators and Cardiac Resynchronization Therapy

A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, Heart Rhythm Society, American Heart Association, American Society of Echocardiography, Heart Failure Society of America, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance

Endorsed by the American Geriatrics Society

Figure 8. Secondary Prevention: Sustained Hemodynamically Stable Monomorphic VT Associated With Structural Heart Disease

- A Appropriate
- M May Be Appropriate

enefits of Earlier VT Ablation, CAE Dec 2014

Table 1. Baseline Cli	nical Characte	ristics					1.0-						
Clinical Characteristics	Ali (N=300)	Group 1 (N=75)	Group 2 (N=84)	Group 3 (N=141)	<i>P</i> Value			K		HR 2 vs.1 HR 3 vs.1	= 1.851 (1.168-2 = 2.043 (1.337-3	.993);P=0. .122);P=0.	009 001
Age, y	65±11.7	66.92±11.58	62.68±12.91	65.65±10.84	0.057		0.8-		Martin and a state of the state				
Sex	262 (87.3)	62 (82.7)	78 (92.9)	122 (86.5)	0.14		*	L.	and the second s				
ICM	204 (68.0)	57 (76)	59 (70.2)	88 (62.4)	0.11		val,	7	y -	~~			
Arterial hypertension	211 (70.3)	56 (74.7)	52 (61.9)	103 (73)	0.13		2 0.6-		- The		<u> </u>	~	
Diabetes mellitus	111 (37.0)	26 (34.7)	28 (33.3)	57 (40.4)	0.50		e si		Jon Star				Group1
Atrial fibrillation	117 (39.0)	27 (36.0)	31 (36.9)	59 (41.8)	0.63		fre			~			
Heart failure NYHA>II	146 (48.7)	28 (37.3)	41 (48.8)	77 (54.6)	0.054		Ė 0.4−						
Coronary artery bypass	101 (33.7)	30 (40)	21 (25)	50 (35.7)	0.10		E I						Group2 Group3
ICD at admission	254 (84.7)	36 (48)	78 (92.9)	140 (99.3)	0.0001		0						oroupo
Electrical storm	119 (39.7)	22 (29.3)	34 (40.5)	63 (44.7)	0.088		0.2-						
AAD at admission	133 (44.3)	27 (36.0)	36 (42.9)	70 (49.6)	0.43								
Amiodarone	117 (39.0)	23 (30.7)	32 (38.1)	62 (44.0)									
Class IB or C	11 (3.7)	3 (4.0)	3 (3.6)	5 (3.5)			0.0						
Sotalol	5 (1.7)	0 (0)	2 (1.4)	3 (2.1)				ò	200	400	600	730	800
Incessant VT	37 (12.3)	15 (20)	9 (10.7)	13 (9.2)	0.063		No. of state 4		Time to	first recurrence	e, days		
LVEF, %	32.6±11.1	35.60±13.31	32.57±10.75	31.01±9.75	0.016		NY AT FISK 1	75	46	33	22	19	
High VT-burden	171 (57)	33 (44)	48 (57)	90 (63.8)	0.020		2	84	43	23	15	12	
						HEIDER BEREITER	3	141	68	44	33	25	

Table 3.Univariate and Multivariate Cox Regression Analysis ofVentricular Tachycardia Recurrence

	Univariate		Multivariat	e
Variable	HR (95% CI)	P Value	HR (95% CI)	P Value
Delayed vs early	1.85 (1.17–2.93)	0.009	1.95 (1.19–3.18)	0.007
Very late vs early	2.04 (1.34-3.12)	0.001	1.96 (1.24–3.09)	0.004
NIDCM	1.57 (1.16–2.14)	0.005	1.70 (1.11–2.60)	0.014
CABG	1.19 (0.82–1.53)	0.480	1.48 (1.02-2.14)	0.040
Absence of β -blocker	1.91 (1.21–3.03)	0.006	1.77 (1.05-2.98)	0.033
Complete success	1.59 (1.02–2.50)	0.042	1.54 (1.04–2.72)	0.032

CABG indicates coronary artery bypass grafting; CI, confidence interval; HR, hazard ratio; and NIDCM, nonischemic dilated cardiomyopathy.

Current practice in Europe: how do we manage patients with ventricular tachycardia? European Heart Rhythm Association survey

Alessandro Proclemer^{1*}, Nikolaos Dagres², Germanas Marinskis³, Laurent Pison⁴, Gregory Y.H. Lip⁵, and Carina Blomstrom-Lundqvist⁶, conducted by the Scientific Initiative Committee, European Heart Rhythm Association

In secondary prevention patients, RFA of the VT was performed during the same hospitalization of ICD implantation in:

- 50% of the patients in 11.4% of centers
- 21 50% of patients 4.5% of centers
- 20% of the patients in 38.6% of centers

Why to perform VT ablation?

prophysiol. 2016 ; Expert Rev. Cardiovasc. Ther. 13(3), 263–276 (2015)

- Better understanding of anatomy barriers
- Better equipment (mapping, support machines)
- More experience

Non-invasive imaging to define substrate ARVC

segmentation

T								
Intervention	Methods	Keference						
Sympathetic blockade	β-blocker therapy	Nademanee et al. ²						
	General anesthesia	Burjorjee et al. ³						
	Epidural anesthesia	Bourke et al. ⁴						
	Sympathetic denervation	Schwartz et al. ⁵ ; Ajijola et al. ⁶						
	Renal denervation	Armaganijan et al. ⁷						
Ablation procedure	Endocardial	Carbucicchio et al. ⁸						
•	Epicardial	Sacher et al. ⁹						
	Alternatives	Tokuda et al. ¹⁰ ; Kumar et al. ¹¹						
Hemodynamic support	ECMO	Chen et al. ¹²						
	LVAD	Abuissa et al. ¹³ ; Thomas et al. ¹⁴						

AES, arrhythmic or electrical storm; ECMO, extracorporeal membrane oxygenation; LVAD, left ventricular assist device.

Canadian Journal of Cardiology 33 (2017)

- VT ablation is associated with high success rate
- A successful ablation may obviate the need for an ICD implantation
 - Successful ablation reduces ICD interventions (so crucial)

Humor me

Ablation at the time of ICD implantation in secondary prevention patients? - Yes

The response

Table 1 Ongoing randomized VT ablation trials

Trial title	Ventricular Tachycardia Ablation versus Enhanced Drug Therapy	Does Timing of VT Ablation Affect Prognosis in Patients with an Implantable Cardioverter-Defibrillator?	Anti-arrhythmic Therapy vs Catheter Ablation as First Line Treatment for AICD Shock Prevention	Substrate Targeted Ablation Using the Cool Flex Irrigated Catheter Ablation System for the Reduction of Ventricular Tachycardia	Indian Trial of Endocardial Ventricular Substrate Ablation to Prevent Recurrent VT Events
Acronym Clinicaltrials.gov identifier Description	VANISH NCT00905853 Compare ablation vs antiarrhythmic (amiodarone +/- mexiletine) for drug-refractory VT in post-MI patients	PARTITA NCT01547208 Two-part study: Part A: monitor all patients to assess whether NSVT or ATP is predictive of ICD shocks. Part B among patients with an ICD shock in Part A: compare ablation vs medical therapy	AVATAR NCT02114528 Single-center catheter ablation vs antiarrhythmic for appropriate ICD therapy	STAR-VT NCT02130765 Substrate catheter ablation vs medical therapy	INTERVENE NCT02301390 Compare ablation vs amiodarone in post- MI patients unable to afford an ICD
Estimated enrollment	260	590	40	1453	136
Study start date Estimated primary completion date	May 2009 November 2015	September 2012 September 2018	June 2014 December 2016	July 2014 July 2020	October 2009 December 2016
Primary endpoint	 Appropriate ICD shocks (5 years) VT storm (5 years) Death (5 years) 	 First appropriate ICD shock No. of patients with worse CHF hospitalizations or death (2 years) 	 Appropriate ICD therapy (after 30-day treatment period) 	 No. of ICD shocks (appropriate and inappropriate) 	 All-cause mortality (2 years) All-cause mortality, cardiac arrest, sustained VT
Secondary endpoints	1. All-cause mortality (5 years)	 Cardiac death (2 years) Electrical storm recurrences (2 years) VT recurrences (2 years) 	 Composite safety endpoint: procedural complications; antiarrhythmic drug use, side effects, and discontinuation; death Slow VT below detection threshold leading to hospitalization or requiring ablation Mortality Quality-of-life score Healthcare resource utilization 	 No. of cardiovascular hospitalizations and CV- related ER visits 	_
Inclusion criteria	Prior MI, ICD in <i>situ</i> , VT within 3 months (3 episodes ATP, 1 ICD shock, sustained VT below detection on ECG, 3 episodes VT in 24 hours), failed first-line antiarrhythmic	Part A: ICD in situ Part B: ICD in situ and status post ICD shock in Part A	ICD, CAD with prior MI, appropriate ICD therapy (>3 ATP or ≥1 appropriate shock)	St. Jude ICD or CRT-D (within 90 days of enrollment), history of spontaneous monomorphic VT or inducible VT during EP study	History of MI (≥1 month), patient unable to afford an ICD and has planned treatment with amiodarone

ATP = antitachycardia pacing; CAD = coronary artery disease; CHF = congestive heart failure; CRT-D = cardiac resynchronization therapy-defibrillator; CV = cardiovascular; EP = electrophysiologic; ER = emergency room; ICD = implantable cardioverter-defibrillator; MI = myocardial infarction; NSVT = nonsustained ventricular tachycardia; VT = ventricular tachycardia.

Ablation? Yes, but ablating what?

FIGURE 2 Burden of Ventricular Arrhythmias Before and After Renal Denervation

rrhythmic Medications at Baseline and at
low-Up

Patient #	Medications	Dose at Baseline (mg)	Dose at 6 Months of Follow-Up (mg)			
1	A, BB, L	600, 200, 300	400 (), 150 (), 0 ()			
2	A, BB	900, 100	200 (), 100			
3	A, BB, P	200, 50, 900	0 📣, 50, 900			
4	A, BB	600, 200	300 🕢), 100 🕠			
5	Α	200	200			
6	A, BB	600, 25	Death			
7	A, BB	600, 25	200 (), 25			
8	A, BB	600, 50	Death			
9	A, BB	200, 100	200, 100			
10	A, BB, L	600, 6.25, 300	Death			
A = amiodarone; BB = beta-blocker; L = lidocaine; P = propafenone.						

J Am Coll Cardiol Intv 2015;8:984-90

INDIAN HEART JOURNAL 66 (2014) \$46-\$48

Clinical Perspective

Radio frequency ablation for VT – A cost-effective tool to combat SCD in developing countries

Mohan Nair^{a,*}, Sanjib Kumar Patra^b

 ^a Chairman — Cardiac Sciences, Saket City Hospital, Mandir Marg, Press Enclave Road, Saket, New Delhi 110017, India
 ^b Senior Consultant — Cardiac Sciences, Saket City Hospital, Mandir Marg, Press Enclave Road, Saket, New Delhi 110017, India

And we all will live happily ever after

